Extensions 1→N→G→Q→1 with N=C4×S32 and Q=C2

Direct product G=N×Q with N=C4×S32 and Q=C2
dρLabelID
S32×C2×C448S3^2xC2xC4288,950

Semidirect products G=N:Q with N=C4×S32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×S32)⋊1C2 = S32⋊D4φ: C2/C1C2 ⊆ Out C4×S32244(C4xS3^2):1C2288,878
(C4×S32)⋊2C2 = S3×C4○D12φ: C2/C1C2 ⊆ Out C4×S32484(C4xS3^2):2C2288,953
(C4×S32)⋊3C2 = D1223D6φ: C2/C1C2 ⊆ Out C4×S32244(C4xS3^2):3C2288,954
(C4×S32)⋊4C2 = S32×D4φ: C2/C1C2 ⊆ Out C4×S32248+(C4xS3^2):4C2288,958
(C4×S32)⋊5C2 = S3×D42S3φ: C2/C1C2 ⊆ Out C4×S32488-(C4xS3^2):5C2288,959
(C4×S32)⋊6C2 = Dic612D6φ: C2/C1C2 ⊆ Out C4×S32248+(C4xS3^2):6C2288,960
(C4×S32)⋊7C2 = S3×Q83S3φ: C2/C1C2 ⊆ Out C4×S32488+(C4xS3^2):7C2288,966
(C4×S32)⋊8C2 = D1215D6φ: C2/C1C2 ⊆ Out C4×S32488-(C4xS3^2):8C2288,967
(C4×S32)⋊9C2 = C4×S3≀C2φ: C2/C1C2 ⊆ Out C4×S32244(C4xS3^2):9C2288,877

Non-split extensions G=N.Q with N=C4×S32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×S32).1C2 = S3×C8⋊S3φ: C2/C1C2 ⊆ Out C4×S32484(C4xS3^2).1C2288,438
(C4×S32).2C2 = C24⋊D6φ: C2/C1C2 ⊆ Out C4×S32484(C4xS3^2).2C2288,439
(C4×S32).3C2 = S32⋊Q8φ: C2/C1C2 ⊆ Out C4×S32244(C4xS3^2).3C2288,868
(C4×S32).4C2 = S32×Q8φ: C2/C1C2 ⊆ Out C4×S32488-(C4xS3^2).4C2288,965
(C4×S32).5C2 = S32⋊C8φ: C2/C1C2 ⊆ Out C4×S32244(C4xS3^2).5C2288,374
(C4×S32).6C2 = S32×C8φ: trivial image484(C4xS3^2).6C2288,437

׿
×
𝔽